Part Number Hot Search : 
DT430 BU4219F N54LS BSS138 BC848CW NCP5306 D2000 BZT52C5
Product Description
Full Text Search
 

To Download ZL60304 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 ZL60304 Parallel Fiber Optic Transceiver (4 + 4) x 3.125 Gbps
Data Sheet
January 2006
Ordering Information ZL60304MJDA Transceiver
Additional heatsink and EMI shield options are available upon request 0C to +80C
Features
* * * * * * Compatible with POP4 MSA usage 4 Transmit channels and 4 Receive channels Data rate up to 3.125 Gbps per channel 850 nm VCSEL array Data I/O is CML compatible Link reach with 50/125 m 500 MHz. km fiber, 300-m and 90-m at 2.5 and 3.125-Gbps, respectively * * * * * *
Channel BER better than 10-12 Industry standard MPO/MTP ribbon fiber connector interface Pluggable MegArray(R) connector Laser class 1 M IEC 60825-1:2001 compliant Low power consumption, < 1 W Power supply 3.3 V
Rx_EN Rx_SD SQ_EN
VCCA Rx
VCCB Rx VEE Rx
DOUT0+ DOUT0DOUT3+ DOUT3DIN3+ DIN3-
TransImpedance and Limiting Amplifier
RX0 0
PIN Array
RX1 1
2 RX2 3 RX3 3TX3 2TX2 1 TX1 0 TX0
VCSEL Driver
VCSEL Array
DIN0+ DIN0VCSEL Driver Controller
Tx_EN
Tx_DIS
RESET
FAULT
VCC Tx
VEE TX
Figure 1 - Transceiver Block Diagram
1
Zarlink Semiconductor Inc. Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc. Copyright 2006, Zarlink Semiconductor Inc. All Rights Reserved.
ZL60304
Applications
* * * * * * * High-speed interconnects within and between switches, routers and transport equipment Server-Server Clusters, Super-computing interconnections InfiniBand 4x-SX compliant Fibre Channel connections XAUI based interconnections Proprietary backplanes Interconnects rack-to-rack, shelf-to-shelf, board-to-board, board-to-optical backplane
Data Sheet
Description
The ZL60304 is a very high-speed transceiver for parallel fiber applications. This transceiver performs E/O and O/E conversions for data transmission over multimode fiber ribbon. The ZL60304 provides an effective solution for XAUI transmission of optical fibre, providing advantages in terms of power consumption, edge and board density over competing solutions. The transmit section converts parallel electrical input signals via a laser driver and a VCSEL array into parallel optical output signals at a wavelength of 850 nm. The receive section converts parallel optical input signals via a PIN photodiode array and a transimpedance and limiting amplifier, into electrical output signals. The module is fitted with two pluggable industry-standard connectors. For the electrical interface, a 100 position FCI MegArray(R) receptacle (FCI PN: 84513-101) is used. For the optical interface, an industry-standard MTPTM(MPO) connector is used, which is compliant with IEC 61754-7. This provides ease of assembly on the host board and enables provisioning of bandwidth on demand.
2
Zarlink Semiconductor Inc.
ZL60304 Table of Contents
Data Sheet
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Transmitter Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Transmitter Control and Status Signal Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Transmitter Control and Status Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Receiver Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Receiver Status Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Receiver Status Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Transceiver Module Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Transceiver Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Handling Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Cleaning the Optical Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 ESD Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Link Reach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Link Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Electrical Interface - Application Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3
Zarlink Semiconductor Inc.
ZL60304
Absolute Maximum Ratings
Data Sheet
Not necessarily applied together. Exceeding these values may cause permanent damage. Functional operation under these conditions is not implied. Parameter Supply voltage Differential input voltage amplitude Voltage on any pin Relative humidity (non-condensing) Storage temperature ESD resistance
1. Differential input voltage amplitude are peak to peak values. 1
Symbol VCC V VPIN MOS TSTG VESD
Min. -0.3 -0.3 5 -40
Max. 4.0 2.4 VCC + 0.3 95 100 1
Unit V V V % C kV
Recommended Operating Conditions
Parameter Power supply voltage Operating case temperature Signalling rate (per channel)1 Link distance
2 3
Symbol VCC TCASE fD LD CBLK VNPS
Min. 3.135 0 1.0 2 100
Max. 3.465 80 3.125
Unit V C Gbps m nF
Data I/O DC blocking capacitors Power supply noise4
200
mVp-p
1. Data patterns are to have maximum run lengths and DC balance shifts no worse than that of a Pseudo Random Bit Sequence of length 223-1 (PRBS-23). Information on lower bit rates and longer run lengths are available on request. 2. For maximum distance, see Table 4. 3. For AC-coupling, DC blocking capacitors external to the module with a minimum value of 100 nF is recommended. 4. Power supply noise is defined at the supply side of the recommended filter for all VCC supplies over the frequency range of 500 Hz to 3200 MHz with the recommended power supply filter in place.
HOST Vcc
1 H
Module Vcc
10 F 0.1 F
Figure 2 - Recommended Power Supply Filter
4
Zarlink Semiconductor Inc.
ZL60304
Transmitter Specifications
Data Sheet
All parameters apply over "Recommended Operating Conditions" on page 4, unless otherwise stated. Parameter Optical Parameters Launch power (50/125 mm MMF)1 Extinguished output power Extinction ratio Optical modulation amplitude2 Center wavelength Spectral width
3
Symbol
Min.
Max.
Unit
POUT POFF ER OMA C RIN12OMA tRO tFO
4 4, 5
-8 6 0.19 830
-2 -30
dBm dBm dB mW
860 0.85 -120 150 150 0.30 0.125 150 500 150
nm nmrms dB/Hz ps ps UI UI ps mW mA mVp-p ps ps
Relative intensity noise OMA Optical output rise time (20 - 80%) Optical output fall time (20 - 80%) Total jitter contributed (peak to peak) Channel to channel skew6 Electrical Parameters Power dissipation Supply current Differential input voltage amplitude (peak to peak) Differential input impedance8 Electrical input rise time (20 - 80%) Electrical input fall time (20 - 80%)
7
TJ DJ tSK PD ICC VIN ZIN tRE tFE 200 80
Deterministic jitter contributed (peak to peak)
1600 120 140 140
1. The average output optical power is compliant with IEC 60825-1 Amendment 2, Class 1M Accessible Emission Limits. 2. Informative. Corresponds to POUT = -8 dBm and ER = 6 dB. 3. Spectral width is measured as defined in EIA/TIA-455-127 Spectral Characterization of Multimode Laser Diodes. 4. Total jitter is TP2 - TP1 as defined in IEEE 802.3 clause 38.6 (Gigabit Ethernet). 5. Deterministic jitter is informative. Combined random and deterministic jitter should be no higher than stated total jitter. 6. Channel skew is defined for the condition of equal amplitude, zero ps skew signals applied to the transmitter inputs. 7. Differential input voltage is defined as the peak to peak value of the differential voltage between DIN+ and DIN-. Data inputs are CML compatible. 8. Differential input impedance is measured between DIN+ and DIN-.
5
Zarlink Semiconductor Inc.
ZL60304
Data Sheet
Classified in accordance with IEC 60825-1/A2:2001, IEC 60825-2: 2000 Class 1M Laser Product Emitted wavelength: 840 nm
6
Zarlink Semiconductor Inc.
ZL60304
Transmitter Control and Status Signal Requirements
Data Sheet
The following table shows the timing relationships of the status and control signals of the transmit section. Parameter Control input voltage high1 Control input voltage low Control pull-up resistor2 Control pull-down resistor Status pull-down resistor4 FAULT assert time FAULT lasers off RESET duration RESET assert time RESET de-assert time Tx_EN assert time Tx_EN de-assert time Tx_DIS assert time Tx_DIS de-assert time
3
Symbol VIH VIL RPU RPD1 VOL RPD2 TFA TFD TTDD TOFF TON TTEN TTD TTD TTEN
Min. 0.6VCC -0.5 20
Typ.
Max. VCC+0.5 0.2VCC 50
Unit V V k k V k s s s s ms ms s s ms
10 0.5 10 100 100 10 5 10 100 1 5 5 10 10 1
Status output voltage low4, 5
1. Applies to control signals RESET, Tx_DIS and Tx_EN. 2. Applies to control signals RESET and Tx_EN. Internal pull-up resistor. 3. Applies to control signal Tx_DIS. Internal pull-down resistor. 4. Applies to status signal FAULT. Internal pull-down to VEE. 5. With status output sink current max. 2 mA.
7
Zarlink Semiconductor Inc.
ZL60304
Transmitter Control and Status Timing Diagrams
Data Sheet
The following figures show the timing relationships of the status and control signals of the transmit section.
VCC TTEN
Tx Output [0:3] Data [0:3]
Transmitter Not Ready
Normal operation
RESET: floating or high
Figure 3 - Transmitter Power-up Sequence
FAULT
TFA TFD
Data [0:3] Tx Output [0:3]
No Fault
Fault
Figure 4 - Transmitter Fault Signal Timing Diagram
8
Zarlink Semiconductor Inc.
ZL60304
Data Sheet
RESET
FAULT TTDD TON
Data [0:3] Tx Output [0:3]
Transmitter Not Ready
Normal operation
Figure 5 - Transmitter Reset Signal Timing Diagram
Tx_EN TTD Data [0:3]
Tx_DIS TTD Data [0:3]
Lasers off
Lasers off
Normal operation
Tx Off
Normal operation
Tx Off
Tx_EN TTEN
Data [0:3]
Transmitter Not Ready
Normal operation
Figure 6 - Transmitter Enable and Disable Timing Diagram
Tx_DIS High Tx_EN High Tx_EN Low Transmitter disabled Transmitter disabled
Tx_DIS Low Normal operation Transmitter disabled
Table 1 - TruthTable for Transmitter Operation (Pre-condition: RESET floating or HIGH)
9
Zarlink Semiconductor Inc.
ZL60304
Receiver Specifications
Data Sheet
All parameters apply over "Recommended Operating Conditions" on page 4, unless otherwise stated.
.
Parameter Optical Parameters Unstressed receiver sensitivity1 Center wavelength Return loss
2
Symbol
Min.
Max.
Unit
PIN C RL PSS TJL
5
-14 830 12
-2 860 -10.9 0.50 0.20 150 -16
dBm nm dB dBm UI UI ps dBm dBm
Stressed receiver sensitivity3 Total link jitter contribution4 Deterministic link jitter contribution Channel to channel skew6 Signal detect assert Signal detect de-assert Electrical Parameters Power dissipation Supply current Differential output voltage amplitude (peak to peak) Output differential load impedance8 Electrical output rise time (20 - 80%) Electrical output fall time (20 - 80%)
7
DJL tSK PSA PSD PD ICC VOUT ZL tRE tFE 400 80 -31
500 150 800 120 150 150
mW mA mVp-p ps ps
1. Receiver sensitivity is measured using a source that does not degrade the sensitivity measurement, i.e. an ideal source. Receive sensitivity for a channel is measured for a BER of 10-12 and worst case extinction ratio. PIN (Min) is measured using a fast rise/fall time source with low RIN and adjacent channel(s) operating with incident power of 6 dB above PIN (Min). 2. Return loss is measured as defined in TIA/EIA-455-107A Determination of Component Reflectance or Link/System Return Loss Using a Loss Test Set. 3. Based on specified Unstressed receiver sensitivity and Gigabit Ethernet link model,"Link Model Parameters" on page 15. 4. Total jitter is TP4-TP1 values. 5. Deterministic jitter is informative. Combined random and deterministic jitter should be no higher than stated total jitter. 6. Channel skew is defined for the condition of equal amplitude, zero ps skew signals applied to the receiver inputs. 7. Differential output voltage is defined as the peak to peak value of the differential voltage between DOUT+ and DOUT- and measured with a 100 W differential load connected between DOUT+ and DOUT-. Data outputs are CML compatible. 8. See Figure 10.
10
Zarlink Semiconductor Inc.
ZL60304
Receiver Status Signal
Data Sheet
The following table shows the timing relationships of the status and control signals of the receive section. Parameter Control input voltage high1 Control input voltage low
1
Symbol VIH VIL IIN VOL RPU TSD TLOS TRXEN TRXD
Min. 2.0
Typ.
Max.
Unit V
0.9 10 3.25 50 50 33 5 200 200 100 0.4
V A V k s s ms s
Control input pull-up current1 Status output voltage low
2, 3
Status output pull-up resistor2 Receiver signal detect assert time Receiver signal detect de-assert time Receiver enable assert time Receiver enable de-assert time
1. Applies to control signals Rx_EN, SQ_EN. 2. Applies to status signal Rx_SD. Internal pull-up to VCC. 3. With status output sink current max 2 mA.
Receiver Status Timing Diagrams The following figures show the timing relationships of the status and control signals of the receive section.
Rx_EN TRXD
ICC
Normal Operation
Rx Off
Figure 7 - Receiver Enable Signal Timing Diagram
11
Zarlink Semiconductor Inc.
ZL60304
Data Sheet
Rx_SD TLOS Signal No Signal
Figure 8 - Receiver Signal Detect Timing Diagram
Transceiver Module Signals
The pluggable parallel optical transceiver uses a 100 position FCI MegArray electrical connector (FCI PN: 84513-101), and an industry standard MTP(MPO) optical receptacle compliant with IEC 61754-7. K 1 2 3 4 5 6 7 8 9 10
DOUT00DOUT00+ VEE Rx DOUT01+ DOUT01VEE Rx VCCB Rx NIC NIC VCCA Rx
J
VEE Rx VEE Rx VEE Rx VEE Rx VEE Rx VEE Rx VCCB Rx DNC DNC VCCA Rx
H
DOUT03+ DOUT03VEE Rx DOUT02DOUT02+ VEE Rx VCCB Rx DNC DNC VEE Rx
G
VEE Rx VEE Rx VEE Rx NIC NIC NIC NIC DNC SD NIC
F
VEE Rx VEE Rx VEE Rx NIC NIC NIC NIC RX_EN SQ_EN NIC
E
VEE Tx VEE Tx VEE Tx NIC NIC NIC NIC TX_DIS RESET NIC
D
VEE Tx VEE Tx VEE Tx NIC NIC NIC NIC TX_EN FAULT NIC
C
DIN03DIN03+ VEE Tx DIN02+ DIN02VEE Tx VCC Tx DNC DNC VEE Tx
B
VEE Tx VEE Tx VEE Tx VEE Tx VEE Tx VEE Tx VCC Tx DNC DNC VCC Tx
A
DIN00+ DIN00VEE Tx DIN01DIN01+ VEE Tx VCC Tx DNC DNC VCC Tx
Table 2 - Transceiver Pinout Assignments (Top view, toward MPO/MTP connector end) (10x10 array, 1.27 mm pitch)
Module front view - MTP key up Tx0 Tx1 Tx2 Tx3 - - - - Rx3 Rx2 Rx1 Rx0 Host printed circuit board Table 3 - Transceiver Optical Channel Assignment
12
Zarlink Semiconductor Inc.
ZL60304
Transceiver Pin Description
Data Sheet
The transceiver module case is electrically isolated from Transmitter signal common and Receiver signal common. Connection through mounting screw holes or frontplate whichever is applicable. Make the appropriate electrical connection for EMI shield integrity. Signal Name DIN[0:3] +/VCC Tx VEE Tx Type Data input Description Transmitter data in, channel 0 to 3 Transmitter power supply rail Transmitter signal common. All transmitter voltages are referenced to this potential unless otherwise stated. Control input Control input Status output Control input Data output Transmitter enable. HIGH: normal operation LOW: disable transmitter Transmitter disable. HIGH: disable transmitter LOW: normal operation Transmitter fault. HIGH: normal operation LOW: laser fault detected on at least one channel Transmitter reset. HIGH: normal operation LOW:reset to clear fault signal Receiver data out, channel 0 to 3. PIN preamplifier power supply rail. Receiver quantizer power supply rail. Receiver signal common. All receiver voltages are referenced to this potential unless otherwise stated. Control input Status output Control input Receiver enable. HIGH: normal operation LOW: disable receiver Receiver signal detect. HIGH: valid optical input on all channels LOW: loss of signal on at least one channel Squelch enable. HIGH: squelch function enabled. Data OUT is squelched on any channels that have loss of signal LOW: squelch function disabled Do not connect to any potential, including ground. No internal connection. Directly connect these pads to the PC board receiver signal ground plane. Internal pull-up. Directly connect these pads to the PC board transmitter signal ground plane. Active high, internal pull-up. See Table 1. Active high, internal pulldown. See Table 1. When active, all channels are disabled. Clear by reset signal. Internal pull-up. Internal pull-up. Comments Internal differential termination at 100 .
TX_EN
TX_DIS
FAULT
RESET
DOUT[0:3] +/VCCA Rx VCCB Rx VEE Rx
RX_EN
RX_SD
Internal pull-up.
SQ_EN
Internal pull-up.
DNC NIC
13
Zarlink Semiconductor Inc.
ZL60304
Data Sheet
VCCA and VCCB Rx can be connected to the same power supply. However, to insure maximum receiver sensitivity and minimize the impact of noise from the power supply, it is recommended to keep the power supplies separate and to use the recommended power supply filtering network on VCCARx, see Figure 2.
Handling Instructions
Cleaning the Optical Interface A protective connector plug is supplied with each module. This plug should remain in place whenever a fiber cable is not inserted. This will keep the optical port free from dust or other contaminants, which may potentially degrade the optical signal. Before reattaching the connector plug to the module, visually inspect the plug and remove any contamination. If the module's optical port becomes contaminated, it can be cleaned with high-pressure nitrogen (the use of fluids, or physical contact, is not advised due to potential for damage). Before a fiber cable connector is attached to the module, it is recommended to clean the fiber cable connector using an optical connector cleaner, or according to the cable manufacturer's instructions. It is also recommended to clean the optical port of the module with high-pressure nitrogen. Connectors For optimum performance, it is recommended that the number of insertions is limited to 50 for the electrical MegArray connector and 200 for the optical MPO/MTP connector. ESD Handling When handling the modules, precautions for ESD sensitive devices should be taken. These include use of ESD protected work areas with wrist straps, controlled work-benches, floors etc.
14
Zarlink Semiconductor Inc.
ZL60304
Link Reach
Data Sheet
The following table lists the minimum reach distance of the pluggable parallel fiber optic transceiver for different multi-mode fiber (MMF) types and bandwidths based on the Gigabit Ethernet link model version 2.3.5. Each case allows for a maximum of 2 dB per channel connection loss for patch cables and other connectors and assumes worst case on all input parameters. Fiber Type [core / cladding m] 50/125 MMF 50/125 MMF Modal Bandwidth @ 850 nm [MHz*km] 400 500 Reach Distance @ 2.5 Gbps [m] 260 300 Reach Distance @ 2.7 Gbps [m] 230 270 Reach Distance @ 3.125 Gbps [m] 80 90
Table 4 - Link Reach for Different Fiber Types and Data Rates Longer operating distance than the range specified here can be achieved using transmitters, receivers and / or cables meeting specification but performing better than worst case. Link Model Parameters The link reaches above have been calculated using the following link model parameters and Gigabit Ethernet link model version 2.3.5 (filename: 5pmd047.xls). Parameter Mode partition noise k-factor Modal noise Dispersion slope parameter Wavelength of zero dispersion Attenuation coefficient at 850 nm Conversion factor Q-factor [BER 10 TP4 eye opening DCD allocation at TP3 RMS baseline wander S.D. RIN coefficient Conversion factor DCD DJ BLW kRIN c_rx
-12
Symbol k MN SO UO dB C1 Q
Value 0.3 0.3 0.11 1320 3.5 480 7.04 0.3 0.08 0.025 0.70 329
Unit
dB ps/nm2*km nm dB/km ns.MHz UI UI
]
ns.MHz
15
Zarlink Semiconductor Inc.
ZL60304
Electrical Interface - Application Examples
Recommended CML output Transmitter CML input
Data Sheet
Host PCB
100nF ZOUT=100 Differential Z0=100 Differential 100nF ZIN=100 Differential
Figure 9 - Recommended Differential CML Input Interface
Receiver CML output
Recommended CML input
Host PCB
100nF Z0=100 Differential 100nF ZTERM=100 Differential
ZL
Figure 10 - Recommended Differential CML Output Interface
Trademarks
Infiniband is a registered trademark of the InfiniBand Trade Association. MTP is a registered trademark of US Conec Ltd. The MegArray is a registered trademark of FCI.
16
Zarlink Semiconductor Inc.
NOTES:1. All dimensions in mm. 2. Tolerancing per ASME Y14.5M-1994. A C
A10 18,16
A1
n0,58 0,05
7,48
j n0,05 A B-C
2-56 UNC-2B
13,72 17,5 1,145
n2,5
j n0,15m A B-C
n3,63
B
2-56 UNC-2B 3,50 Deep MIN 36,87
j n0,15m A j n0,15m A B-C
n1,3
j n0,15m A B-C
FRONT VIEW ( 2 : 1 )
27,64
12,23 3,26
7,55
14,4
30,23 31,75
0,76
0,98
4,3
12,5
Projection Method
(c) Zarlink Semiconductor 2002. All rights reserved.
Package code Previous package codes
Drawing type
ISSUE ACN DATE
1
2
3
MJ
JS004296R1A JS004296 rev.2 JS004296 rev.3
Package Drawing - Module Layout Title
12-JUN-03 24-JAN-04 24-JAN-05
APPRD. TD/BE
MD/MA
MD/MA
JS004296
(n2,69 0,12 Hole)
17,5 14,4 Max product outline Component keep-out area.
j n0,1 A B-C
n1,70 0,12 Holes
j n0,1 A B-C
n3,00 MIN pads, Keep Out
j n0,1 A B-C
n0,58 0,05 Pads
K1
A1
35,31 0,75
K10
A10
18,16
n2,69 0,12 Hole
j n0,1 A
n4,30 MIN pads (3x), Keep Out
B
C
NOTES:1. All dimensions in mm. 2. Tolerancing per ASME Y14.5M-1994.
(c) Zarlink Semiconductor 2002. All rights reserved.
1,145 A 13,72
Projection Method
5,15 0,25
j n0,1 A B-C
Package code Previous package codes
Drawing type
30,23
j n0,05 A B-C
31,75
ISSUE ACN DATE
1
2
3
MJ
JS004296R1A JS004296 rev.2 JS004296 rev.3
12-JUN-03 24-JAN-05 14-FEB-05
APPRD. TD/BE
Package Drawing, Host Circuit Board Footprint Layout Title
MD/MA
MD/MA
JS004296
For more information about all Zarlink products visit our Web Site at
www.zarlink.com
Information relating to products and services furnished herein by Zarlink Semiconductor Inc. or its subsidiaries (collectively "Zarlink") is believed to be reliable. However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink. This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink's conditions of sale which are available on request.
Purchase of Zarlink's I2C components conveys a licence under the Philips I2C Patent rights to use these components in and I2C System, provided that the system conforms to the I2C Standard Specification as defined by Philips. Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc. Copyright Zarlink Semiconductor Inc. All Rights Reserved.
TECHNICAL DOCUMENTATION - NOT FOR RESALE


▲Up To Search▲   

 
Price & Availability of ZL60304

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X